OLIMPIADA DE MATEMATICĂ
 FAZA PE SECTOR; BUCUREȘTI-14.02.2009

CLASA a V-a

1. Determinați cel mai mic număr natural de forma $\overline{2009 a_{1} a_{2} \ldots a_{k} 2009}$ care are suma cifrelor 2009 .

Daniela Chites

2. Cailor unei ferme li s-au pus potcoave noi. Potcoavele se prind de copitele cailor cu ajutoruf unor "cuie" speciale numite caiele. Dacă în total s-au folosit 1284 caiele , câţi cai au fost potcoviţi?
(Precizare .O potcoavă este fixată prin cel puţin două cuie(caiele) la piciorul unui cal.)

Dilimoț-Niță Vasilica
3.Să se determine ultima cifră a numărului :

$$
M=1+1 \cdot 2+1 \cdot 2 \cdot 3+1 \cdot 2 \cdot 3 \cdot 4+\ldots+1 \cdot 2 \cdot 3 \cdot \ldots \cdot 2008
$$

Doina Stoica (Gazeta Matematică)
4.Să se determine suma tuturor resturiłor împărţirilor la 10 ale numerelor naturale n, cu proprietatea $0 \leq n \leq 2009$.

Dorela Făinişi

Notǎ

Toate subiectele sunt obligatorii. Fiecare subiect se notează intre 1 şi 7 puncte.
Timp de lucru efectiv : 2 ore

OLIMPIADA DE MATEMATICĂ

FAZA PE SECTOR; BUCUREŞT1-14.02.2009

SOLUTUII ŞI BAREM DE CORECTARE

CLASA a V-a

$1.2009-11 \cdot 2=1987 ; 1987=220 \cdot 9+7$. Deci minimul va fi obținut pentru $a_{1}=7, a_{2}=a_{3}=\ldots=a_{221}=9$.
2.Dacă n este numărul cailor, k numărul de caiele folosite , $1284=n \cdot k \cdot 4 \Leftrightarrow n \cdot k=321 ;(k>1)$ deoarece pentru fixarea unei potcoave sunt necesare minim două caiele ;
$321=3 \cdot 107$ este descompunerea în factoṛi primi, rezultă $k=3$ şi $n=107$, deoarece nu se pot accepta 107 caiele la o potcoavă.
3. Ultima cifră este 3.
$4.2010: 10=201 ; 0+1+\ldots+9=45$, deci suma va fi egală cut: $201 \cdot 45=9045$.

OLJMPIADA DE MATEMATICÅ

FAZA PE SECTOR

BUCURESTTI-14.02.2009

CLASA a VI-a

1. În jurul unei mese rôtunde cu 36 de locuri se află 19 fete şi 17 băieţi. Să se arate că oricum s-ar aşeza , cel puțin două fete se vor afla faţă în față (pe locuri diametral opuse).

Georgeta Alexandrescu, Niculaie Marin Goşoniu

2.Fie $a, b, c \in \mathbb{N}$, astfel încât $\quad 2 \cdot a+3 \cdot b=9 \cdot n+24$ şi $5 \cdot b-6 \cdot c=15 \cdot n+2$. Să se determine a şì c.

Dumitru Săvulescu (Gazeta Matematică)

3.Pe o dreaptă se consideră un punct fix A, un punct mobil P şi mijlocul N al segmentului $A P$. Când punctul P se deplasează pe dreaptă şi ajunge în poziţia P^{\prime}, punctul N se deplasează şi ajunge în poziţia N^{\prime}. Ce relaţie există între lungimile segmentelor $P P^{\prime}$ si $N N^{\prime}$?

Viorel Chinan
4.în jurul punctului O se consideră unghiurile $\Varangle A_{1} O A_{2}, \Varangle A_{2} O A_{3}, \Varangle A_{3} O A_{4}, \ldots, \Varangle A_{13} O A_{12}, \Varangle A_{12} O A_{1}$ ce au interioarele disjuncte şi măsurile exprimate în grade prin numere naturale multipli consecutivi ai lui 4.
a)Aflaţi măsurile unghiurilor.
b) Există două dintre laturile unghiurilor care sǎ fie semidrepte opuse ?
c) Există două bisectoare ale unghiurilor care să aibă dreptele suport perpendiculare ?

Nicolae Victor , Petre Simion

Notă .Toate subiectele sunt obligatorii. Fiecare subiect se notează între 1 şi 7 puncte.
Timp de lucru efectiv : 2 ore.

OLIMPIADA DE MATEMATICĂ

FAZA PE SECTOR

BUCUREŞT1-14.02.2009

SOLUTII ŞI BAREM DE CORECTARE

CLASA a VI-a

1.Se aplică principiul cutieì.
2.Înmulțim prima relaţie cu 5 , pe cea de-a doua cu 3 și le scădem.Obținem $5 a+9 c=57$. Din $9 c \leq 57$ deducem $c \leq 6$. Din $5 a=57-9 c$, deducem că $57-9 c$ se divide cu 5 .Obținem $c=3$ şi $a=6$
3.Se consideră toate cele 6 aşezări (permutări) ale punctelor şi se obţine : $N N^{\prime}=\frac{1}{2} P P^{\prime}$
4.a) $8^{\circ}, 12^{\circ}, \ldots, 52^{\circ}$
b)Da existǎ. Perechea $\left(\left(O A_{8},\left(O A_{11}\right)\right)\right.$, deoarece
$m\left(\Varangle A_{6} O A_{7}\right)+\ldots+m\left(\Varangle A_{10} O A_{11}\right)=28^{\circ}+32^{\circ}+36^{\circ}+40^{\circ}+44^{\circ}=180^{\circ}$
c) Da există. Fie ($O E_{1},\left(O E_{2}, \ldots,\left(O E_{12}\right.\right.$ bisectoarele celor 12 unghiuri în ordinea scrisă. Atunci $O E_{5} \perp O E_{8}$, deoarece
$m\left(\Varangle E_{5} O A_{6}\right)+m\left(\Varangle A_{6} O A_{7}\right)+m\left(\Varangle A_{7} O A_{8}\right)+m\left(\Varangle A_{8} O E_{8}\right)=12^{\circ}+28^{\circ}+32^{\circ}+18^{\circ}=90^{\circ}$.

olimpiada de matematica

FAZA PE SECTOR

BUCUREŞTI-14.02.2009

CLASA a VII-a

1.a) Să se demonstreze că $\frac{1}{n(n+8)}=\frac{1}{8} \cdot\left(\frac{1}{n}-\frac{1}{n+8}\right)$, pentru orice $n \in \mathbb{N}^{*}$.
b) Să se caiculeze suma $S=\frac{1}{1 \cdot 9}+\frac{1}{9 \cdot 17}+\frac{1}{17 \cdot 25}+\ldots+\frac{1}{41 \cdot 49}$
c) Determinaţi $x, y \in \mathbb{Z}$ astfel incât $x^{2} \cdot \sqrt{(y-1)^{2}}=2009$
2.Să se demonstreze că numărul $\overline{A(A+1)}$ nu este pătrat perfect, oricare ar fi numărul natural A de forma : $A=4 \cdot k+2, k \in \mathbb{N}$.

Petre Simion
3.Să se arate că ecuația : $\quad x^{2}+6 y^{2}=2807$ nu are soluții numere întregi .

Costel Chiteş, Gabriel Vrinceanu
4.Fie $A B C$ un triunghi ascuţitunghic $\mathrm{cu} m(\varangle A)=60^{\circ}$, iar E şi F picioarele înălțimilor din B şi C.

Notăm cu M mijlocul laturii [$B C$]şi cu H ortocentrul triunghiului.
a) Stabiliţi $m(\Varangle B H C)$
b) Stabiliți natura triunghiutui $E F M$
c) Ştiind că $\frac{A F}{F B}=\frac{5}{3}$, determinaţi $\frac{A E}{E C}$

Anca -Silvia Negulescu

Notă . Toate subiectele sunt obligatorii. Fiecare subiect se notează între 1 şi 7 puncte. Timp de lucru efectiv : 3 ore.

OLIMPIADA DE MATEMATICA

FAZA PE SECTOR
BUCURESTI-14.02.2009

CLASA a VIIl-a

1. Să se rezolve ecuaţia :

$$
\left|\frac{6 x}{3 x+1}\right|+\left|\frac{3 x+1}{6 x}\right|=2-|3 x-1|
$$

Dilimot-Niţă Vasilica
2. Un triunghi are lungimile înălțimilor $\sqrt{2}, \sqrt{3}, \sqrt{6}$. Aflaţi lungimile mẹdianelor .

Damian Marinescu (Gazeta Matematică)

3. Dacă $a \in \mathbb{R}_{+}^{\prime}$ şi $a+\frac{1}{a}=3$, să se determine valoarea expresiei :

$$
E=\frac{1}{a^{4}} \cdot\left(a^{8}+a^{7}+a^{6}+a^{5}+a^{4}+a^{3}+a^{2}+a+1\right)
$$

4.Fie paralelipipedul dreptunghic $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ având proprietatea $A A^{\prime} \leq \min (A B, B C)$. Notăm cu O centrui dreptunghiului $A B C D$.
a)Să se demonstreze că paralelipipedul este cub dacà şi numai dacă $C^{\prime} O \perp A C$.
b) În cazul în care $C^{\prime} O \perp A^{\prime} C$, determinatio măsura unghiului planelor $\left(A O C^{\prime}\right)$ sil $\left(A^{\prime} B C\right)$.

Daniela Chites

Notă. Toate subiectele sunt obligatorii. Fiecare subiect se notează intre 1 şi 7 puncte. Timp de lucru efectiv: $\mathbf{3}$ ore.

