EVALUAREA NAȚIONALĂ PENTRU ELEVII CLASEI a VIII-a

Anul şcolar 2016 - 2017

Matematică

Simulare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 2 ore.

5p

SUBIECTUL I - Pe foaia de examen scrieți numai rezultatele.

(30 de puncte)

5p 1. Rezultatul calculului 9-36:(4+5) este egal cu ...

5p 2. Dacă x și y sunt numere reale nenule astfel încât $\frac{x}{3} = \frac{4}{y}$, atunci $\frac{xy}{12}$ este egal cu ...

5p 3. Produsul numerelor întregi din intervalul [-3, 2] este egal cu

5p 4. Lungimea unui cerc este egală cu 100π cm . Raza acestui cerc este egală cu ... cm .

5p 5. În *Figura 1* este reprezentat un cub ABCDA'B'C'D' cu AB = 6 cm. Perimetrul triunghiului ACD' este egal cu ... cm.

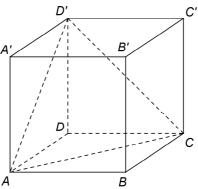
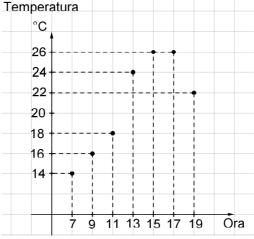


Figura 1

6. În diagrama de mai jos sunt prezentate valorile temperaturilor înregistrate la o stație meteo, din două în două ore pe parcursul unei zile, între ora 7 și ora 19.



Conform diagramei, diferența dintre temperatura înregistrată la ora 17 și temperatura înregistrată la ora 7 este egală cu ... °C.

SUBIECTUL al II-lea - Pe foaia de examen scrieți rezolvările complete.

(30 de puncte)

5p 1. Desenați, pe foaia de examen, o piramidă triunghiulară regulată cu vârful V și baza triunghiul ABC.

5p 2. Determinați numerele întregi x pentru care numărul $\frac{13}{x-7}$ este natural.

5p 3. Suma a două numere naturale este egală cu 280. Determinați cele două numere, știind că o treime din primul număr este egală cu o pătrime din al doilea număr.

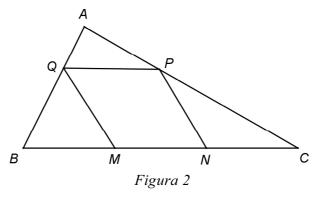
5p 4. a) Arătați că $\frac{\sqrt{2}}{\sqrt{2}-1} + \frac{2(\sqrt{2}-1)}{\sqrt{2}} = 4$.

- **5p b)** Calculați media geometrică a numerelor $a = (\sqrt{5} + \sqrt{3})^2$ și $b = (\sqrt{5} \sqrt{3})^2$.
- **5p 5.** Se consideră $E = x^2 + y^2 2xy 3x 3y + 2(2xy + 3)$, unde x și y sunt numere reale. Știind că x + y = 5, arătați că E = 16.

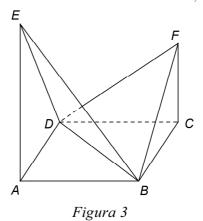
SUBIECTUL al III-lea - Pe foaia de examen scrieți rezolvările complete.

(30 de puncte)

1. În *Figura 2* este reprezentat un triunghi dreptunghic ABC cu $m(\not\prec BAC) = 90^\circ$, AB = 9 cm şi AC = 12 cm. Punctele M şi N aparțin laturii BC, punctul Q aparține laturii AB şi punctul P aparține laturii AC, astfel încât BM = MN = NC = MQ = NP.



- **5p** a) Arătați că perimetrul triunghiului *ABC* este egal cu 36 cm.
- **5p b)** Arătați că aria triunghiului PMC este egală cu 24 cm^2 .
- **5p** | **c**) Demonstrați că patrulaterul *MNPQ* este romb.
 - 2. În Figura 3 este reprezentat un pătrat ABCD cu AB = 4 cm. Pe planul pătratului ABCD se construiesc perpendicularele AE și CF astfel încât $AE = 2\sqrt{6}$ cm și $CF = 2\sqrt{2}$ cm.



- **5p** a) Arătați că $AC = 4\sqrt{2}$ cm.
- **5p b)** Arătați că aria triunghiului FBD este egală cu $8\sqrt{2}$ cm².
- **5p** c) Demonstrați că unghiul dintre planele (EBD) și (FBD) are măsura egală cu 75° .

EVALUAREA NAȚIONALĂ PENTRU ELEVII CLASEI a VIII-a

Anul şcolar 2016 - 2017

Matematică

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al II-lea și SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	5	5 p
2.	1	5 p
3.	0	5 p
4.	50	5 p
5.	$18\sqrt{2}$	5p
6.	12	5p

SUBIECTUL al II-lea (30 de puncte)

1.	Desenează piramida triunghiulară regulată	4
1.		4p
	Notează piramida triunghiulară regulată	1 p
2.	Cum $x-7$ este număr întreg, $\frac{13}{x-7} \in \mathbb{N} \iff x-7=1$ sau $x-7=13$	3р
	x = 8 sau $x = 20$	2p
3.	$\frac{a}{3} = \frac{b}{4} = \frac{a+b}{7} = \frac{280}{7} = 40$, unde a și b sunt cele două numere	3p
	a = 120 și $b = 160$	2p
4.	a) $\frac{\sqrt{2}(\sqrt{2}+1)}{(\sqrt{2})^2 - 1^2} + \frac{2\sqrt{2}(\sqrt{2}-1)}{(\sqrt{2})^2} = \frac{2+\sqrt{2}}{1} + \frac{2\sqrt{2}(\sqrt{2}-1)}{2} =$	3р
	$= 2 + \sqrt{2} + 2 - \sqrt{2} = 4$	2 p
	b) $a \cdot b = ((\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3}))^2 = 4$	3р
	$m_g = \sqrt{a \cdot b} = 2$	2p
5.	$E = x^{2} + y^{2} + 2xy - 3(x + y) + 6 = (x + y)^{2} - 3(x + y) + 6 =$	3p
	$=5^2-3\cdot 5+6=16$	2 p

SUBIECTUL al III-lea (30 de puncte)

1.	a) $BC^2 = AB^2 + AC^2 = 9^2 + 12^2 = 225$, deci $BC = 15$ cm	3p
	$P_{\Delta ABC} = AB + AC + BC = 9 + 12 + 15 = 36 \mathrm{cm}$	2p
	b) PN mediană în ΔPMC și, cum $PN = \frac{MC}{2}$, obținem ΔPMC dreptunghic în P	2p
	$PM \parallel AB \Rightarrow \Delta PMC \sim \Delta ABC \Rightarrow \frac{PM}{AB} = \frac{MC}{BC} = \frac{PC}{AC}$, deci $PM = 6 \text{ cm}$ şi $PC = 8 \text{ cm}$, de unde	3p
	obţinem $\mathcal{A}_{\Delta PMC} = \frac{PM \cdot PC}{2} = 24 \text{ cm}^2$	Эр

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

	c) QM mediană în ΔQBN și $QM = \frac{BN}{2}$, deci ΔQBN dreptunghic în $Q \Rightarrow NQ \perp AB$ și, cum $AB \perp AC$ și $MP \perp AC$, obținem $MP \perp NQ$	2p
	Cum ΔQMN este isoscel și $MP \perp NQ$, obținem că punctul O este mijlocul lui NQ , unde $\{O\} = MP \cap NQ$ și, cum ΔMNP este isoscel și $MP \perp NO$, punctul O este mijlocul lui MP , deci $MNPQ$ este romb	3p
2.	a) $AC^2 = AB^2 + BC^2 =$	2p
	$=16+16=32$, deci $AC=4\sqrt{2}$ cm	3p
	b) $FC \perp (ABC)$, CB , $CD \subset (ABC) \Rightarrow FC \perp CB$ și $FC \perp CD$, de unde $\Delta FCB \equiv \Delta FCD$, deci ΔFBD este isoscel, de unde obținem $FO \perp BD$, unde $\{O\} = AC \cap BD$	2p
	ΔFCO este dreptunghic, deci $FO = 4 \text{ cm}$, de unde obținem $\mathcal{A}_{\Delta FBD} = \frac{4\sqrt{2} \cdot 4}{2} = 8\sqrt{2} \text{ cm}^2$	3p
	c) $EA \perp (ABC)$, $AO \perp BD$, AO , $BD \subset (ABC) \Rightarrow EO \perp BD$	1p
	Cum $(EBD) \cap (FBD) = BD$, $EO \perp BD$, $EO \subset (EBD)$ și $FO \perp BD$, $FO \subset (FBD)$, obținem $m(\sphericalangle((EBD),(FBD))) = m(\sphericalangle(EO,FO))$	1p
	ΔFCO dreptunghic isoscel, deci $m(\ll FOC) = 45^{\circ}$ şi ΔEAO dreptunghic cu $AO = \frac{1}{2}OE$, deci $m(\ll EOA) = 60^{\circ}$, de unde obținem $m(\ll (EO, FO)) = m(\ll EOF) = 180^{\circ} - 60^{\circ} - 45^{\circ} = 75^{\circ}$	3p