József Wildt International Mathematical Competition
 The Edition XXVI ${ }^{\text {th }}, 2016$

The solution of the problems W. 1 - W. 50 must be mailed before 10. September 2016, to Mihály Bencze, str. Hărmanului 6, 505600 Săcele - Négyfalu, Jud. Braşov, Romania, E-mail: benczemihaly@yahoo.com; benczemihaly@gmail.com

W1. Show that $H=\sum_{q \text { odd, } q \text { squarefree }} \prod_{p \mid q} \frac{2}{p-2} \gg(\log Q)^{2}$.
Michael Rassias
W2. Let D be a fixed squarefree integer with $D \geq 1$. Let also $\pi_{D}(x)=\sum_{\substack{p \leq x \\\left(\frac{-D}{p}\right)=1}} 1$.
Prove that $\pi_{D}(x) \sim \frac{1}{2} \pi(x)$, when $x \rightarrow+\infty$
Michael Rassias
W3. Let $\left(F_{k}\right)_{k \geq 0}, F_{0}=0, F_{1}=1, F_{k+2}=F_{k}+F_{k+1},(\forall) k \in N$ and $A=\left(a_{i j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}, B=\left(b_{j k}\right)_{\substack{1 \leq j \leq n \\ 1 \leq k \leq m}}^{\substack{10}} \mid$ $C=\left(c_{r s}\right)_{1 \leq r, s \leq m}, a_{i j}=F_{j}, b_{j k}=F_{j}, c_{r s}=F_{m-r+1}^{2},(\forall) i, k=\overline{1, m},(\forall) \overline{1, n}$. For p, q positive integers compute $(\bar{A} B)^{p} C^{q}$.
D.M.Bătineţu-Giurgiu and Neculai Stanciu

W4. Let $a, b \in(-\infty,+\infty)$. Find $\lim _{n \rightarrow \infty}\left(\frac{(n+3)^{n+2+a}}{(n+2)^{n+1+b}}-\frac{(n+2)^{n+1+a}}{(n+1)^{n+b}}\right)$.
D.M.Bătineţu-Giurgiu and Neculai Stanciu

W5. Let $f: R_{+}^{*} \rightarrow R_{+}^{*}$ be a continue function such that $\lim _{x \rightarrow \infty} \frac{f(x)}{x^{m}}=a \in R_{+}^{*}$, where $m \in[1,+\infty)$.
Calculate $\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{\prod_{k=1}^{n} f(k)}-\sqrt[n]{\prod_{k=1}^{n} f(k)}\right)$.
D.M.Bătineţu-Giurgiu and Neculai Stanciu

W6. If a, b, c are the sides of a triangle, demonstrate the inequality $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{r}{R} \leq 2$.
Stănescu Florin
W7. If all triangle $A B C$ holds $\sum \sin A-\prod \sin A \geq \sum \sin ^{3} A \geq \prod \sin A+4 \prod \cos A\left(\sum \sin A\right)$.
Stănescu Florin
W8. Let $f, g:[0,1] \rightarrow(0,+\infty), f(0)=g(0)=0$ two continuous functions such that f it's convex, and g concave. If $h:[0,1] \rightarrow R$ is an increasing function, show that
$\int_{0}^{1} h(x) g(x) d x \int_{0}^{1} f(x) d x \leq \int_{0}^{1} g(x) d x \int_{0}^{1} h(x) f(x) d x$.
Stănescu Florin
W9. Let n be a positive integer. Prove that

$$
\sum_{k=1}^{n} \frac{F_{2 k}}{\left(F_{2 k+1}-1\right)^{2}}<2
$$

where F_{n} is the $n^{t h}$ Fibonacci number. That is, $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for $n \geq 1$.

W10. Let a, b, and c be positive real numbers. Prove that

$$
\left(\frac{(6 n+1) a-b}{n(b+c)}\right)^{2}+\left(\frac{(6 n+1) b-c}{n(c+a)}\right)^{2}+\left(\frac{(6 n+1) c-a}{n(a+b)}\right)^{2} \geq 27
$$

for any positive integer $n \geq 1$.
José Luis Díaz-Barrero
W11. Let $x>y>z>t$ be four positive integers such that

$$
\left(x^{2}-y^{2}\right)+(x z-y t)-\left(z^{2}-t^{2}\right)=0 .
$$

Prove that $x y+z t$ is a composite number.
José Luis Díaz-Barrero
W12. Let $n \in N$ and let $O_{n}=1+\frac{1}{3}+\ldots+\frac{1}{2 n-1}$. Calculate $\lim _{n \rightarrow \infty} \frac{1}{n}\left(1+\frac{20 n}{n}\right)^{n}$.
Ovidiu Furdui
W13. Let $\left(a_{n}\right)_{n \in N}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty} n\left(a_{n}-1\right)=l \in(-\infty, \infty)$ and let $p \geq 1$ be a natural number. Calculate $\lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(a_{n}+\frac{1}{\sqrt[p]{k n}}\right)$.

Ovidiu Furdui
W14. 1). Let $f, g:[a, b] \rightarrow R$ be two nonnegative continuous functions. Assume that f attains its maximum at a unique point on $[a, b]$ and g attains its maximum at the same point as f and possibly at other points. Prove that $\lim _{n \rightarrow \infty} \frac{\int_{a}^{b} f^{n+1}(x) g(x) d x}{\int_{a}^{b} f^{n}(x) d x}=\|f\|_{\infty}\|g\|_{\infty}$
2). Does the result hold under no assumption on f and g ?

Ovidiu Furdui
W15. Let a, b, c be positive real numbers. Prove that

$$
\sum_{\mathrm{cyc}}\left(\frac{2 a^{2}}{a+b}+\frac{a^{3}}{b^{2}+c^{2}}\right) \geq \frac{9}{2} \frac{a^{2}+b^{2}+c^{2}}{a+b+c}
$$

Paolo Perfetti
W16. Prove that $\sin t\left(\cos ^{3} t+\sqrt{\sin t}\right) \geq\left(\frac{2 t}{\pi}\right)^{\cos ^{2} t}$ when $0 \leq t \leq \frac{\pi}{2}$.
Paolo Perfetti
W17. Let p a positive real number and let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence defined by $a_{1}=1, a_{n+1}=\frac{a_{n}}{1+a_{n}^{p}}$.
Find those real values $q \neq 0$ such that the following series converges $\sum_{n=1}^{\infty}\left|(p n)^{-\frac{1}{p}}-a_{n}\right|^{q}$.
Paolo Perfetti
W18. In 3-dimensional Euclidean space, let S be a sphere with centre O and radius R. Three pairwaise orthogonal rays originating in O intersect S at A, B, C. Let P be a point of S and let a, b, c denote the areas of triangles $O P A, O P B, O P C$, respectively. Prove $2 a(+b+c)\left(a^{3}+b^{3}+c^{3}\right) \geq R^{4}(a b+b c+c a)$.

W19. Let a, b, c, x, y, z be real numbers such that $a, b, c>0$ and $a+b+c=x+y+z=1$. Let $u=x y-b z, v=a z-c x, w=b x-a y$ and $M=\left(\begin{array}{lll}\frac{2 y}{b+c} & z-c & b-y \\ c-z & \frac{2 v}{c+a} & x-a \\ y-b & a-x & \frac{2 w}{a+b}\end{array}\right)$. Prove that $\operatorname{det}(M)=0$ if and only if $u+v+w=0$.

Michael Battaille

W20. Let Γ be a circle and let $A \in \Gamma, B \in \Gamma, C \notin \Gamma$ be such that $C A$ and $C B$ intersect Γ again at diametrically opposite points. If l is the radial axis of Γ and the circle with centre A, radius $A C$, show that $d(C, l)=\frac{C A \cdot C B}{A B} .(d(C, l)$ denotes the distance from C to $l)$.

Michael Battaille
W21. Let $A B C$ be a triangle and we note $A B=c, B C=a, C A=b$ and m_{a}, m_{b}, m_{c} the medians lengths corresponding to the vertexes A, B respective C. Prove the inequality $\sum \frac{\left(b^{2}+c^{2}\right)^{2}}{m_{a}^{3}} \geq \frac{32 \sqrt{3}}{9}(a+b+c)$.

Ovidiu Pop

W22. Let $A B C D$ be a convex quadrilateral, $O \in[A C], O M\|B C, M \in A B, O N\| A B, N \in B C$, $O P \| A D, P \in C D$ and $O Q \| C D, Q \in D A$. Prove the inequalities $\min \{$ Area $[A B D]$, Area $[B C D]\} \leq$ Area $[M N P Q] \leq$ $\leq \max \{$ Area $[A B D]$, Area $[B C D]\}$.

Ovidiu Pop

W23. Let $n \in N$, for k integer, $1 \leq k \leq n$, euclidean division n by k gives $n=q k+n_{k}$, and denote p_{n} the probability that $n_{k} \geq \frac{k}{2}$. Calculate p_{n} and find $\lim _{n \rightarrow \infty} p_{n}$.

Moubinol Omarjee
W24. Let $f \in C^{3}\left(R^{n}, R\right)$ with $f(0)=f^{\prime}(0)=0$. Prove that there exist $h \in C^{3}\left(R^{m}, S_{n}(R)\right)$, such that $f(x)=x^{t} h(x) x$, when $S_{n}(R)$, is the set of symmetric matrix, and x^{t} is the transpose of x.

Moubinol Omarjee
W25. Find the nature of the series $\sum_{n \geq 1} \frac{e^{i \ln \left(p_{n}\right)}}{p_{n}}$ when $\left(p_{n}\right)_{n \geq 1}$ is the prime number increasing order, and i imaginary complex number.

Moubinol Omarjee
W26. Let M be a point in the interior of triangle $A B C$ and R_{a}, R_{b}, R_{c} the radii of circumcircle of $M B C, M C A, M A B$. Show that $\frac{1}{R_{a}}+\frac{1}{R_{b}}+\frac{1}{R_{c}} \leq \frac{1}{M A}+\frac{1}{M B}+\frac{1}{M C}$

Nicuşor Minculete
W27. Let $a_{j}>0,(j=1,2, \ldots, k)$ such that $\sum_{\text {cyclic }} \prod_{j=1}^{k-1} a_{j}=k$, and $n>1$. Prove that $\sum_{\text {cyclic }} \sqrt[n]{a_{1}+\frac{1}{\prod_{j=1}^{k} a_{j}}} \geq k \sqrt[n]{2}$.

W28. Let $\left(x_{n}\right)_{n \geq 0}$ be the sequence defined recurrently by $x_{n+2}=x_{n+1}-\frac{1}{2} x_{n}$ with initial terms $x_{0}=2$ and $x_{1}=1$. Find $\sum_{n=1}^{\infty} \frac{x_{n}}{n+2}$.

W29. Let x, y, z be positive real numbers such that $x+y+z=1$. Prove that
$\sqrt{\frac{x^{3}+1}{x^{2}+y+z}}+\sqrt{\frac{y^{3}+1}{y^{2}+z+x}}+\sqrt{\frac{z^{3}+1}{z^{2}+x+y}} \leq 3 \sqrt{2}$.
Ángel Plaza
W30. Let be $x_{0}=x_{1}=1$ and $x_{n+2}=5 x_{n+1}-x_{n}-1$ for all $n \geq 0$. Prove
$x_{n} x_{m} x_{p} x_{m+1} x_{m+2} x_{p+2} \geq\left(\sqrt[3]{x_{n+1}^{2} x_{m+1}}+\sqrt[3]{x_{m+1}^{2} x_{p+1}}+\sqrt[3]{x_{p+1}^{2} x_{n+1}}\right)^{3}$ for all $n, m, p \in N$.
Mihály Bencze
W31. If $a_{k}>1(k=1,2, \ldots, n)$ then $\sum\left(\log _{a_{1}} a_{1} a_{2}\right)^{\lambda} \geq n 2^{\lambda}$ for all $\lambda \in(-\infty, 0] \cup[1,+\infty)$.
Mihály Bencze
W32. If $x, y, z>0$ and $x+y+z=1$ then
$8(1-x)^{x}(1-y)^{y}(1-z)^{z} \leq 3(2-x-y)^{x+y}(2-y-z)^{y+z}(2-z-x)^{z+x}$.
Mihály Bencze
W33. 1). Let $f: R \rightarrow R$ be a bijective and continuous function such that $f(a)=\lambda a$ and $f(b)=\lambda b$ when $a, b \in R$ and $\lambda \in R^{*}$. Prove that exist $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)+\lambda f^{-1}\left(\lambda x_{0}\right)=2 \lambda x_{0}$.
2). Let $f: R \rightarrow R$ be a bijective and continuous function such that $f(a)=\lambda b$ and $f(b)=\lambda a$ when $a, b \in R$ and $\lambda \in R^{*}$. Prove that exist $x_{0} \in(a, b)$ such that $f\left(\frac{f\left(x_{0}\right)}{\lambda}\right)=\lambda x_{0}$.

Mihály Bencze
W34. Prove $\sum_{k=1}^{n}\left(\frac{2(k+1)(k+2)^{2}}{\left((k+2)!!^{3}\right.}\right)^{\frac{1}{k}} \geq \frac{n(n+5)}{3(n+2)(n+3)}$.
Mihály Bencze
W35. Prove that exist infinitely many $n \in N$ for which n ! is divisible by $n^{5}+n-1$.

W36. Let $\triangle(x, y, z)=2(x y+y z+z x)-\left(x^{2}+y^{2}+z^{2}\right)$ and let a, b, c be sidelengths of a triangle with area F. Prove that $\triangle\left(a^{3}, b^{3}, c^{3}\right) \leq \frac{64 F^{3}}{\sqrt{3}}$.

Arkady Alt
W37. Let E be a inner Product Space with dot product - - and F be proper nonzero subspace. Let $P: E \rightarrow E$ be orthogonal proiection E on F .
a). Prove that for any $x, y \in E$, holds inequality $|x \cdot y-x P(y)-y P(x)| \leq\|x\| \cdot\|y\|$
b). Determine all cases when equality occours

Arkady Alt
W38. Prove that $0<\left(\frac{4^{x}+2^{x}+1}{x}\right)^{x}-2^{x}<1$ for all $x \in\left(0, \frac{1}{2 e}\right]$.
Ionel Tudor
W39. Let $n \geq 2$ be a natural number and $a_{i}>0, i=\overline{1, n}$. If $S=\sum_{i=1}^{n} a_{i}$ and $x_{i}=S-a_{i}$, then the following inequality holds:

$$
\frac{\prod_{i=1}^{n} \sqrt{a_{i}}}{\sqrt[(n-1)]{\prod_{1 \leq i<j \leq n}\left(a_{i}+a_{j}\right)}} \leq \frac{\prod_{i=1}^{n} \sqrt{x_{i}}}{\sqrt[(n-1)]{\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)}}
$$

Ovidiu Bagdasar
W40. Prove that if $x_{i}>0, i=\overline{1, n}$, then the next inequality holds:

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{S_{\alpha+\beta}-x_{i}^{\alpha+\beta}}{S_{\alpha}-x_{i}^{\alpha}} \leq n \cdot \frac{S_{\alpha+\beta}}{S_{\alpha}}, \tag{1}
\end{equation*}
$$

provided that $\alpha \beta \geq 0$ and $S_{p}=\sum_{i=1}^{n} x_{i}^{p}$, for any real number p.
Ovidiu Bagdasar
W41. Let $n \geq 2$ a natural number and the numbers $a_{i}>1, i=\overline{1, n}$. Prove that

$$
\sum_{i=1}^{n} \frac{\log _{a_{i}} a_{i+1}^{n-1}}{S-a_{i}} \geq \frac{n^{2}}{\sum_{i=1}^{n} a_{i}}
$$

We consider that $a_{n+1}=a_{1}$, and $S=\sum_{i=1}^{n} a_{i}$.
Ovidiu Bagdasar
W42. Let $A B C$ be an acute triangle. The angle bisectors from A, B, C meet the opposite sides in A_{1}, B_{1}, C_{1}, respectively. Let R and r be the circumradius and the inradius of the triangle $A B C$, respectively. Let R_{A}, R_{B}, and R_{C} the circumradii of the triangles $A C_{1} B_{1}, B A_{1} C_{1}$, and $C B_{1} A_{1}$, respectively. Prove that

$$
R_{A}+R_{B}+R_{C} \geq R+r
$$

Pál Péter Dályay
W43. Let f be a continuous real function defined on the set of the nonnegative real numbers for which the following integrals are convergent: $S=\int_{0}^{\infty} f^{2}(x) d x, T=\int_{0}^{\infty} x f^{2}(x) d x, U=\int_{0}^{\infty} x^{2} f^{2}(x) d x$. Prove that

$$
\left(\int_{0}^{\infty}|f(x)| d x\right)^{2} \leq 2(\sqrt{S U}+T)
$$

Pál Péter Dályay
W44. If ζ is the Riemann zeta-function, and s is a real number greater than $3 / 2$, then:

$$
\begin{gathered}
\zeta^{2}(s) \leq \pi \sqrt{2}\left(\sum_{i, j=1}^{\infty} \frac{1}{i^{s-1} j^{s-1}(i+j)} \sum_{k, l=1}^{\infty} \frac{1}{k^{s-1} l^{s-1}(k+l)^{3}}\right)^{1 / 2} \leq \\
\leq \frac{\pi}{2 \sqrt{2}} \zeta(s-1 / 2) \zeta(s+1 / 2)
\end{gathered}
$$

Pál Péter Dályay
W45. Let $x \in$ Poisson (2) be a random variable
i). Find the set M of all the values $n \in N^{*}$ so that $P\left(\left\{\omega /|x(\omega)-2| \geq \frac{2}{n}\right\}\right) \leq \frac{128}{n^{2}}$ ii). From the set M we extract 2 numbers one, after the other. Find the probability that the second extradet number could be the greatest, in the following two situation: with return in the set, and without return in M.

Laurenţiu Modan

W46. i). For any $n>3$ natural numbers, prove that $2 n!+(2 n)!>3 \cdot 2^{n+2}$
ii). Study the convergence of the series $\sum_{n>3} \frac{1}{2 n!+(2 n)!}$

Laurenţiu Modan
W47. Let $a, b, c, d \in(0,1)$ and $f:(0,1) \rightarrow R$ a convex and decreasing function. Prove that $\sum f\left(1-a^{3}\right) \geq \sum f\left(1-a^{2} b\right)$.

Marius Drăgan
W48. Let I be an interval and $f: I \rightarrow R$ a convex function and $x_{1}, x_{2}, \ldots, x_{n} \in I$. Prove that $\sum_{k=1}^{n} f\left(x_{k}\right)-n\left(\frac{1}{n} \sum_{k=1}^{n} x_{k}\right) \geq \max _{1 \leq i<\ldots<i_{k} \leq n}\left(f\left(x_{i_{1}}\right)+\ldots+f\left(x_{i_{k}}\right)-k f\left(\frac{x_{i_{1}}+\ldots+x_{i_{k}}}{k}\right)\right)$

Marius Drăgan and Mihály Bencze
W49. Find all the functions $f: R \rightarrow[-1,1]$ such that $f(x+y)(1-f(x) f(y))=f(x)+f(y)$ for each $x, y \in R$.

Marius Drăgan and Sorin Rădulescu
W50. Find all the function $f: R \rightarrow R$ which are continuous in a real point x_{0} such that $f(x+y)=f(x) \sqrt{1+f^{2}(y)}+f(y) \sqrt{1+f^{2}(x)}$ for each $x, y \in R$.

