
Test 1 — Solutions

Problem 1. Let ABC be a triangle, let O be its circumcentre, let A′ be the orthogonal projection
of A on the line BC, and let X be a point on the open ray AA′ emanating from A. The internal
bisectrix of the angle BAC meets the circumcircle of ABC again at D. Let M be the midpoint
of the segment DX. The line through O and parallel to the line AD meets the line DX at N .
Prove that the angles BAM and CAN are equal.

Solution 1. Choose a point Y such that AONY is a parallelogram. Since the lines AD and
ON are parallel, this point lies on the line AD (see Fig. 1). We prove that the triangles AOY
and AXD are similar. Since the line AN bisects the segment OY the conclusion follows.

It is well known that the internal bisectrix AD of the angle ABC is also the internal bisectrix
of the angle OAA′. Next, the corresponding sides of the triangles OND and ADX are parallel,
so these triangles are similar. Hence ON/OD = AD/AX. Since OD = OA and ON = AY ,
this shows that AY/AO = AD/AX. Along with the equality of the angles OAY and DAX, this
proves the required similarity of the triangles AOY and AXD.
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Fig. 1

Solution 2. Since the angle BAC is internally bisected by AD, it is sufficient to prove that so
is the angle MAN .

Let P , Q, R, S be the points of intersection of the pairs of lines AM and OD, OA and XD,
AN and OD, and AD and QR, respectively (see Fig. 2). Since the angles MAN and PAR are
the same, we show that AD is the internal bisectrix of the latter.

Apply Menelaus’ theorem to both triangles DMP and DRS and the transversal AOQ to
write

AM

AP
· OP
OD
· QD
QM

= 1

and
AD

AS
· OR
OD
· QS
QR

= 1,

respectively. Since OD ‖ AX and DM = MX, we have AM = MP . In triangle AQD, the
line ON is parallel to AD, so R lies on its median from Q, and hence AS = SD. Thus MS ‖ PD,
which yields QM

QD = QS
QR . Combining the obtained relations we get

OP

OD
=
QM

QD
· AP
AM

=
QS

QR
· AD
AS

=
OD

OR
,



or OD2 = OP · OR. Thus, OA2 = OP · OR. This shows that the triangles OAR and OPA are
similar, and ∠OAR = ∠OPA. Finally, by OA = OD we obtain

∠RAD = ∠OAD − ∠OAR = ∠ODA− ∠OPA = ∠DAP,

as required.
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Remark. The conclusion is that AM and AN , and AB and AC are pairs of isogonal lines.
This is still true if A separates A′ and X, but in this case AD is the external bisectrix of the
angle MAN , and the angles BAM and CAN are supplementary.

Problem 2. Let ABC be a triangle, and let r denote its inradius. Let RA denote the radius of
the circle internally tangent at A to the circle ABC and tangent to the line BC; the radii RB

and RC are defined similarly. Show that 1/RA + 1/RB + 1/RC ≤ 2/r.

Solution. We shall prove that 1/RA = (a/∆) cos2(B/2 − C/2), where ∆ denotes the area of
the triangle ABC. Similar formulae hold for RB and RC , and the conclusion follows at once; in
addition, this shows that equality holds if and only if the triangle ABC is equilateral.

To prove the above formula for RA, let γA be the circle tangent at A to the circle ABC and
tangent at T to the line BC, assume the triangle ABC has unit circumradius, and invert from
A with unit power. In what follows, X ′ will denote the image of the point X 6= A under this
inversion.

Under this inversion, the line BC is transformed into a circle AB′C ′ centred at some point
Ω; the circle ABC is transformed into the line B′C ′; and γA is transformed into a line ` through
T ′ and parallel to B′C ′.

Let D be the orthogonal projection of A on the line BC. Then AD′ = 1/AD = 1/hA, where
hA is the length of the altitude from A in the triangle ABC, and ΩT ′ = ΩA = 1/(2hA).

Next, let A1 be the antipode of A in γA, so A′1 is the orthogonal projection of A on `, and
AA′1 = 1/AA1 = 1/(2RA).
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Finally, let O denote the circumcentre of the triangle ABC and notice that the angles OAD
and ΩAA′1 are both congruent to the absolute value of the difference of the internal angles of the
triangle ABC at B and C, to obtain

cos(B − C) =
AA′1 − ΩT ′

ΩA
=

1
2RA
− 1

2hA

1
2hA

=
hA
RA
− 1 =

2∆

aRA
− 1,

whence the desired formula via obvious standard transformations.

Remarks. (1) Instead of the inversion from A, we could equally well have considered a homoth-
ecy centred at A transforming the circle ABC into γA.

(2) We may also consider the circles externally tangent at A, B, C, respectively, to the circle
ABC, and tangent to the lines BC, CA, AB, respectively. Letting R′A, R′B, R′C denote their
radii, the corresponding inequality now reads 1/R′A + 1/R′B + 1/R′C < 1/(2r). Notice that if the
triangle ABC is isosceles, say AB = AC, then the circle corresponding to the apex A degenerates
into the parallel through A to BC, so R′A =∞ and 1/R′A = 0, and the inequality is still valid.

Problem 3. A Pythagorean triple is a solution of the equation x2 + y2 = z2 in positive integers
such that x < y. Given any non-negative integer n, show that some positive integer appears in
precisely n distinct Pythagorean triples.

Solution 1. We show by induction n ≥ 0, that 2n+1 appears in precisely n distinct Pythagorean
triples. Since no Pythagorean triple contains 2, the assertion holds for n = 0. For the induction
step, let n ≥ 1, and assume that 2n appears in exactly n − 1 distinct Pythagorean triples. The
latter produce n−1 distinct non-primitive Pythagorean triples each containing 2n+1. To conclude
the proof, we show that 2n+1 appears exactly once in a primitive Pythagorean triple. Recall that
the primitive Pythagorean triples are described by the well-known formulae x = v2−u2, y = 2uv,
z = u2 + v2, where u and v are coprime positive integers, not both odd, and u < v. Since x and
z are both odd, if 2n+1 appears in the triple, then 2n+1 = y = 2uv, and since u < v and u and
v have opposite parity, necessarily u = 1 and v = 2n. Consequently, 2n+1 appears in exactly n
distinct Pythagorean triples.

Solution 2. If P (m) is the number of Pythagorean triples containing the positive integer m,
and if P0(m) is the number of primitive such triples, then P (m) =

∑
d|m P0(d). Since P0(1) =

P0(2) = 0 and P0(2
k) = 1, k ≥ 2 (as in the previous solution), it follows that P (2n+1) = n, so

2n+1 appears in exactly n distinct Pythagorean triples.

Solution 3. We show that if p is a prime congruent to 3 modulo 4, then pn appears in exactly
n Pythagorean triples, and is moreover always the smallest entry of any such.

Since p is congruent to 3 modulo 4, −1 is a quadratic non-residue modulo p, so no power of
p can be the largest entry of a Pythagorean triple. Hence, if pn is a member of a Pythagorean
triple, then p2n = b2 − a2 for some positive integers a < b, so b − a = pk and b + a = p2n−k for
some non-negative integer k < n. Clearly, every such k corresponds to a solution and there are
precisely n distinct Pythagorean triples containing pn, namely,

pn, pk(p2(n−k) − 1)/2, pk(p2(n−k) + 1)/2, k = 0, 1, . . . , n− 1.

It is worth noticing that this argument avoids appealing to the parametric representation of
Pythagorean triples.

Problem 4. Let k be a positive integer congruent to 1 modulo 4 which is not a perfect square,
and let a = (1 +

√
k)/2. Show that {ba2nc − babancc : n = 1, 2, 3, . . .} = {1, . . . , bac}.
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Solution. Let an = an − banc, n = 1, 2, 3, . . . . Since a2 = a + (k − 1)/4, it follows that
ba2nc = banc + n(k − 1)/4, and (a − 1)banc = (a − 1)(an − an) = n(k − 1)/4 − (a − 1)an, so,
adding banc to each side, abanc = banc+ n(k− 1)/4− (a− 1)an = ba2nc − (a− 1)an. Since a is
irrational, the an form a dense subset of the open unit interval (0, 1), so, by the preceding, the
differences ba2nc− abanc = (a− 1)an form a dense subset of the open interval (0, a− 1). Finally,
since ba2nc − babancc = dba2nc − abance = d(a− 1)ane, the conclusion follows.

Problem 5. Given an integer N ≥ 4, determine the largest value the sum

bk/2c+1∑
i=1

(bni/2c+ 1)

may achieve, where k, n1, . . ., nk run through the integers subject to k ≥ 3, n1 ≥ · · · ≥ nk ≥ 1,
and n1 + · · ·+ nk = N .

Solution. The required maximum is 2bN/3c + ε, where ε = 1 if N is divisible by 3, and ε = 2
otherwise.

For more convenience, given a list of k real numbers, the sublist consisting of the 1 + bk/2c
largest entries will be referred to as the upper half of the list, and its complement, i.e., the sublist
consisting of the b(k + 1)/2c − 1 smallest entries, as the lower half of the list. Notice that the
lower half of a list consisting of at least three real numbers is never empty.

To maximise the sum s in the statement, we list a sequence of operations which transform
any given partition of N into at least three positive integers into another such whose lower half is
all 1, and the upper half is all 2 except possibly one unit entry; moreover, each operation yields a
partition into at least three positive integers, and does not decrease s, whence the conclusion. In
what follows, n1, . . ., nk will denote a generic partition of N into at least three positive integers;
the obvious verifications are omitted.

If the number of unit entries in the partition is less than b(k + 1)/2c − 1, i.e., the lower half
has some entry ni > 1, splitting ni into 1 and ni − 1 increases length by 1, and s by at least 1 if
k is odd, and preserves it otherwise; in either case, s does not decrease.

If the number of unit entries in the partition exceeds b(k + 1)/2c, i.e., the upper half has at
least two unit entries, replacing two 1’s by one 2 increases s by 1 if k is odd, and preserves it
otherwise; in either case, s does not decrease, and since N > 3 the resulting partition has length
at least three. (In fact, the length of the resulting partition would be less than three only in case
N = 3, and the partition we start with is 1, 1, 1 — the unique partition of 3 into three positive
integers. This is, however, ruled out by hypothesis.)

Consequently, a partition of N into at least three positive integers can be transformed into
another such whose lower half is all 1, and the upper half has at most one unit entry; moreover,
s does not decrease in the process, and the lengths of the partitions involved are at least three.
Henceforth, all partitions are assumed to have such a structure.

If the upper half has no unit entry, but has some odd entry ni > 1, splitting ni into 1 and
ni − 1 increases length by 1, and s by 1 if k is odd, and preserves it otherwise; in either case,
s does not decrease, and the outcome is a partition into at least three positive integers, whose
lower half is all 1, and the upper half has exactly one unit entry and fewer odd entries exceeding
1.

If the upper half has exactly one unit entry and some odd entry ni > 1, replacing that unit
entry and ni by 2 and ni − 1 preserves length, increases s by 1, and the resulting partition has
length at least three, an all 1 lower half, and the upper half has fewer odd entries exceeding 1
and no unit entry.

Consequently, every partition of N into at least three positive integers can be transformed into
another such with an all 1 lower half, and an all even upper half except possibly one unit entry;
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moreover, at each stage, the length of the partition is at least three, and s does not decrease.
Henceforth, all partitions are assumed to have such a structure.

If the upper half has no unit entry, but has some entry ni > 2, splitting ni into 1, 1 and
ni−2 increases length by 2, preserves s and yields a partition into at least three positive integers,
whose lower half is all 1, and the upper half is all even except for exactly one unit entry and has
fewer entries exceeding 2.

Finally, if the upper half is all even except for exactly one unit entry, and has some entry
ni > 2, splitting ni into 2 and ni − 2 increases length by 1, and s by 1 if k is odd, and preserves
it otherwise; in either case, s does not decrease, and the outcome is a partition of length at least
three, whose lower half is all 1, and the upper half is all even with fewer entries exceeding 2.

Consequently, any given partition of N into at least three positive integers can be transformed
into another such whose lower half is all 1, and the upper half is all 2 except for at most one unit
entry; moreover, the transformation does not decrease s, and all partitions have length at least
three. For this ‘standard’ partition, it is readily checked that s = 2bN/3c+ ε, where ε = 1 if N
is divisible by 3, and ε = 2 otherwise. The conclusion follows.

Remark. Maximising partitions are not necessarily unique. For instance, if m is an integer
greater than 1, then

2, . . . , 2︸ ︷︷ ︸
m+1

, 1, . . . , 1︸ ︷︷ ︸
m

and 4, 2, . . . , 2︸ ︷︷ ︸
m−1

, 1, . . . , 1︸ ︷︷ ︸
m

.

are both maximising partitions of 3m + 2 into at least three positive integers; the former is
‘standard’, whereas the latter is not. Similarly, if m > 2, then

2, . . . , 2︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
m

and 4, 2, . . . , 2︸ ︷︷ ︸
m−1

, 1, . . . , 1︸ ︷︷ ︸
m−2

.

are both maximising partitions of 3m into at least three positive integers; again, the former is
‘standard’, whereas the latter is not.
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