IMO 2014

1 Let $a_{0}<a_{1}<a_{2} \ldots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n \geq 1$ such that

$$
a_{n}<\frac{a_{0}+a_{1}+a_{2}+\cdots+a_{n}}{n} \leq a_{n+1} .
$$

2 Let $n \geq 2$ be an integer. Consider an $n \times n$ chessboard consisting of n^{2} unit squares. A configuration of n rooks on this board is peaceful if every row and every column contains exactly one rook. Find the greatest positive integer k such that, for each peaceful configuration of n rooks, there is a $k \times k$ square which does not contain a rook on any of its k^{2} unit squares.

5 Convex quadrilateral $A B C D$ has $\angle A B C=\angle C D A=90^{\circ}$. Point H is the foot of the perpendicular from A to $B D$. Points S and T lie on sides $A B$ and $A D$, respectively, such that H lies inside triangle $S C T$ and

$$
\angle C H S-\angle C S B=90^{\circ}, \quad \angle T H C-\angle D T C=90^{\circ} .
$$

Prove that line $B D$ is tangent to the circumcircle of triangle $T S H$.

