Problem 1.

Solution. Let ¢ N AO = {K} and G be the other end point of the diameter of I' through
A. Then D,C,G are collinear. Moreover, E is the orthocenter of triangle ADG. Therefore
GE 1 AD and G, E, B are collinear.

As Z/CDF = Z/GDK = ZGAC = ZGFC, FG is tangent to the circumcircle of triangle
CFD at F. As /FBE = /FBG = /FAG = /GFK = /ZGFE, FG is also tangent to the
circumcircle of BF'E at F. Hence the circumcircles of the triangles CF'D and BF'E are tangent
at F.



Problem 2.

Solution 1. We will obtain the inequality by adding the inequalities

(z+ )V (z+2)(z+y) > 22y +yz+ 2z
for cyclic permutation of x, y, z.
Squaring both sides of this inequality we obtain
(z+y)%(z +2)(z +y) > 422y* + y?22 + 222% + doy®z + doPyz + 2xy2?
which is equivalent to
2’y +ay’ + (2 +y’) > 20%° + wyz(r +y)

which can be rearranged to
(zy +yz + z2)(z —y)* >0,

which is clearly true.

Solution 2. For positive real numbers x,y, 2z there exists a triangle with the side lengths

VT +y,y+ 2,2+ x and the area K = \/xy +yz + zz/2.

The existence of the triangle is clear by simple checking of the triangle inequality. To prove the
area formula, we have

1
K= 5‘” +yVvz+xsina,
where « is the angle between the sides of length \/r + y and /2 + x. On the other hand, from
the law of cosines we have
r+ytezt+tr—y—z T
2/(@+y)z+2)  VE+y(eta)

COS ¥ =

and

. v/
sina =+v1—cos?2a = I
V(z+y)(z+ )

Now the inequality is equivalent to

\/x+y\/y+z\/z+xz\/x+y2 16K2.

cyc

This can be rewritten as

Vetyyteveta K
4K - chcw/x+y/2

to become the Fuler inequality R > 2r.



Problem 3.

Solution 1. Let « = 3/2s0 1 + a > o?.

Given y, we construct Y algorithmically. Let Y = & and of course Sy = 0. For ¢ = 0 to m,
perform the following operation:

If Sy + 2'3™7" <y, then replace Y by Y U {2'3™ '},

When this process is finished, we have a subset Y of P, such that Sy < y.

Notice that the elements of P, are in ascending order of size as given, and may alternatively
be described as 2™, 2™, 2ma?, ..., 2™a™. If any member of this list is not in Y, then no two
consecutive members of the list to the left of the omitted member can both be in Y. This is
because 1 + a > o2, and the greedy nature of the process used to construct Y.

Therefore either Y = P,,, in which case y = 3™ — 2m+1 and all is well, or at least one of the
two leftmost elements of the list is omitted from Y.

If 2™ is not omitted from Y, then the algorithmic process ensures that (Sy —2™) +2m713 > ¢,
and so y — Sy < 2™. On the other hand, if 2™ is omitted from Y, then y — Sy < 2™).

Solution 2. Note that 3™+ —2m+l = (3 —2)(3™ + 3™ 1.2 4 ... + 3.2 1 4 2m) = Sp .
Dividing every element of P,, by 2™ gives us the following equivalent problem:

Let m be a positive integer, a = 3/2, and Q,, = {1,a,a?,...,a™}. Show that for any real
number z satisfying 0 < 2 < 1+ a + a® + --- + a™, there exists a subset X of @Q,, such that
0<z-—Sx <l

We will prove this problem by induction on m. When m =1, S = 0, Spy = 1, S(ay = 3/2,
S{1,a} = 5/2. Since the difference between any two consecutive of them is at most 1, the claim
is true.

Suppose that the statement is true for positive integer m. Let = be a real number with 0 <
r<l4+a+a’+ ---+a"L. f0<z<1l4+a+a®+ --+a™, then by the induction hypothesis
there exists a subset X of Q),,, C Q41 such that 0 <z — Sy < 1.

am—‘rl -1

If—l:1+a—|—a2+---+am<x,thenx>am+1 as
a_

a™tt -1 m+1 m+1 m+1 m+1 2 mil | L
: =2 =1)=a""+ (@ =2)>d"" +a*—2=a""" + -

a J—
Therefore 0 < (v —a™™) <1+ a+a®+---+a™ Again by the induction hypothesis, there
exists a subset X of Q,, satisfying 0 < (z — a™™!) — Sx < 1. Hence 0 < x — Sx» < 1 where
X'=XU{a"™"} C Qi1



Problem 4.

Solution 1. There are three such functions: the constant functions 1, 2 and the identity
function idz+. These functions clearly satisfy the conditions in the hypothesis. Let us prove
that there are only ones.

Consider such a function f and suppose that it has a fixed point a > 3, that is f(a) = a. Then
al, (a!)!,--- are all fixed points of f, hence the function f has a strictly increasing sequence
a; < ag < -+ < ay < --- of fixed points. For a positive integer n, ay — n divides ay — f(n) =
f(ar) — f(n) for every k € Z*. Also a,, —n divides ay — n, so it divides ax — f(n) — (ar, —n) =
n — f(n). This is possible only if f(n) = n, hence in this case we get f = idgz-+.

Now suppose that f has no fixed points greater than 2. Let p > 5 be a prime and notice that
by Wilson’s Theorem we have (p — 2)! = 1 (mod p). Therefore p divides (p — 2)! — 1. But
(0 —2)!— 1 divides f((p — 2)1) — £(1), hence p divides f((p— 2)!) — £(1) = (f(p — 2)! - f(1).
Clearly we have f(1) = 1 or f(1) = 2. As p > 5, the fact that p divides (f(p — 2))! — f(1)
implies that f(p — 2) < p. Tt is easy to check, again by Wilson’s Theorem, that p does not
divide (p — 1)! = 1 and (p — 1)! — 2, hence we deduce that f(p —2) < p — 2. On the other
hand, p —3 = (p — 2) — 1 divides f(p —2) — f(1) < (p — 2) — 1. Thus either f(p —2) = f(1)
or f(p—2)=p—2. As p—2 > 3, the last case is excluded, since the function f has no fixed
points greater than 2. It follows f(p — 2) = f(1) and this property holds for all primes p > 5.
Taking n any positive integer, we deduce that p — 2 — n divides f(p —2) — f(n) = f(1) — f(n)
for all primes p > 5. Thus f(n) = f(1), hence f is the constant function 1 or 2.

Solution 2. Note first that if f(ng) = ng, then m —ng|f(m)—m for all m € Z* . If f(ng) = ng
for infinitely many ng € Z* | then f(m) — m has infinitely many divisors, hence f(m) = m for
all m € Z™ . On the other hand, if f(ng) = ng for some ng > 3, then f fixes each term of the
sequence (ng)5,, which is recursively defined by n, = ng_;!. Hence if f(3) = 3, then f(n) =n
foralln € Z* .

We may assume that f(3) # 3. Since f(1) = f(1)!, and f(2) = f(2)!, f(1), f(2) € {1,2}. We
have 4 = 3! —2|f(3)! — f(2). This together with f(3) # 3 implies that f(3) € {1,2}. Let n > 3,
then n!—3|f(n)! — f(3) and 31 f(n)!, i.e. f(n)! € {1,2}. Hence we conclude that f(n) € {1,2}
forallm e Z* .

If f is not constant, then there exist positive integers m,n with {f(n), f(m)} = {1,2}. Let
k = 2+ max{m,n}. If f(k) # f(m), then k — m|f(k) — f(m). This is a contradiction as
|f(k)— f(m)]=1and k —m > 2.

Therefore the functions satisfying the conditions are f =1, f =2, f = idz+.



